XNLIeu: a dataset for cross-lingual NLI in Basque

Resumen

XNLI is a popular Natural Language Inference (NLI) benchmark widely used to evaluate cross-lingual Natural Language Understanding (NLU) capabilities across languages. In this paper, we expand XNLI to include Basque, a low-resource language that can greatly benefit from transfer-learning approaches. The new dataset, dubbed XNLIeu, has been developed by first machine-translating the English XNLI corpus into Basque, followed by a manual post-edition step. We have conducted a series of experiments using mono- and multilingual LLMs to assess a) the effect of professional post-edition on the MT system; b) the best cross-lingual strategy for NLI in Basque; and c) whether the choice of the best cross-lingual strategy is influenced by the fact that the dataset is built by translation. The results show that post-edition is necessary and that the translate-train cross-lingual strategy obtains better results overall, although the gain is lower when tested in a dataset that has been built natively from scratch. Our code and datasets are publicly available under open licenses at https://github.com/hitz-zentroa/xnli-eu.

Publicación
NAACL 2024
Julen Etxaniz
Julen Etxaniz
Estudiante de Doctorado en Análisis y Procesamiento del Lenguaje

Estudiante de Doctorado en Análisis y Procesamiento del Lenguaje en HiTZ Center IXA Group (UPV/EHU). Trabajando en mejorar los modelos de lenguaje para idiomas con pocos recursos. Graduado en Ingeniería Informática con especialidad en Ingeniería del Software. Máster en Análisis y Procesamiento del Lenguaje.